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ABSTRACT 
 

Internal pipeline corrosion is primarily associated with the presence of free water, particularly 
when it acts in combination with CO2, H2S and organic acids. Corrosion inhibitors are surface active 
chemicals which can lower both corrosion rates and oil-water interfacial tension, which affects the oil – 
water flow pattern and the wettability of the steel surface.  This paper proposes a methodology to 
estimate these inhibitive effects in an oil-water two phase system for a given corrosion inhibitor. By 
using this methodology, an inhibitor is put through tests to determine the corrosion inhibition, oil-water 
interfacial tension and the wettability. The results can be used to estimate the effectiveness of the 
inhibitor in oil-water pipe flow.  
 

Two generic, “quaternary” and “fatty amino” inhibitors have been tested according to this 
methodology. A significant reduction of oil-water interfacial tension was found if only a relatively low 
concentration of corrosion inhibitor was applied and the steel surface became hydrophobic as a result. 
The performance of corrosion inhibition by the oil soluble/water dispersible “fatty amino” inhibitor was 
enhanced after the carbon steel surface was periodically wetted by the oil phase. 
  
 
Key words: corrosion inhibitor, water wetting, CO2 corrosion, inhibition, carbon steel, two phase, 
wettability, interfacial tension.
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INTR ODUCTION 
 
Carbon steel has been commonly selected as building material for oil and gas transportation pipelines. 
Internal corrosion has been encountered with carbon steel for many years in oil and gas production1. 
Internal pipeline corrosion is primarily associated with the presence of free water, which is potentially 
corrosive with the existence of corrosive species, like CO2, H2S, organic acids, etc. If the water phase is 
fully entrained in the flowing oil phase, problems due to internal corrosion can be avoided. It is 
important to find whether the corrosive water phase will be in contact with the steel surface and cause 
internal corrosion in an oil-water pipe flow under various flow conditions2. In the past, water wetting 
and CO2 corrosion in oil-water flow in pipelines have been considered only in a qualitative sense3-5. The 
first comprehensive experimental and numerical study2 of water wetting and CO2 corrosion in large 
diameter oil-water pipe flow was carried out in 2005 by Institute for Corrosion and Multiphase 
Technology of Ohio University. The effects of crude oil property, pipe inclination and flow regime on 
water wetting and CO2 corrosion have been extensively investigated6. During that experimental study2, 6, 
a series of comprehensive phase wetting map were obtained for model and crude oils with brine at 
different pipe inclinations. Figure 1 shows a phase wetting map obtained with model oil-brine in 
horizontal 4” pipe. Three types of phase wetting regimes were detected: oil wetting, intermittent wetting 
and water wetting. A complete absence of corrosion was observed under oil wetting regime. The 
corrosion rates measured under intermittent wetting regime were almost half of those measured under 
water wetting. These results confirm that water wetting is a complex phenomenon which has a large 
influence on the corrosion rate under oil-water pipe flow. A mechanistic water wetting model has been 
proposed by Cai et al7-8 to predict flow pattern and phase wetting regimes for oil-water pipe flow. Very 
good agreement has been achieved between experimental results and the model prediction as shown in 
Figure 11.  

  
Control of internal corrosion of carbon steel pipeline can be achieved by the injection of corrosion 
inhibitors1. Corrosion inhibitors are surface active compounds that, in small quantities (ppm level), 
produce a reduction in metal loss due to corrosion. Vast majority of corrosion inhibitors are made up of 
molecules which are composed of separate hydrophilic head and hydrophobic tail. It is this combined 
hydrophilic/hydrophobic nature that causes an inhibitor to partition between oil and water phases in pipe 
flow. No studies have been performed on the effects of an inhibitor on phase wetting and flow regimes 
in an oil-water two phase system, which is very important in order to understand water wetting and CO2 
corrosion under realistic flow conditions. It was found that a significant portion of the inhibitor adsorbs 
at the oil-water interface, which results in a lowering of the oil-water interfacial tension9. Oil-water 
interfacial tension is a key parameter indicated in the water wetting model7-8, which affects flow regimes 
and phase wetting regimes in oil-water pipe flow. It has also been known that by lower the oil-water 
interfacial tension by adding corrosion inhibitors may promote the formation and the stabilization of oil-
water emulsions especially at high concentration of corrosion inhibitor at high flow rate5. The 
wettability of the carbon steel becomes an important factor to determine the risk of internal corrosion in 
oil-water pipe flow during transition between stratified flow with mixing layer approaching the bottom 
of pipeline and full dispersion of water-in-oil. The changes of wettability of the steel surface due to a 
corrosion inhibitor molecule adsorption layer10 can be a key factor for understanding surface phase 
wetting and inhibitive effects in oil-water two phase flow.  

 
Understanding the effect of corrosion inhibitor on water wetting and corrosion inhibition is one of the 
most important missing links in our current overall understanding of controlling internal corrosion of 
transportation pipelines made from carbon steel. This paper proposes a methodology to estimate these 
inhibitive effects in an oil-water two phase system for a given inhibitor. By using this methodology, an 
inhibitor is put through tests to determine the corrosion inhibition, oil-water interfacial tension and the 
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wettability. Two generic, “quaternary” and “fatty amino” inhibitors have been tested according to this 
methodology. The results can be used to estimate the effectiveness of the inhibitor in oil-water pipe flow 
in a laboratory prior to implementation in a real system.  
 

EXPERIMENTAL PROCEDURE 
 

Inhibitor formulation and materials 
 
The brine phase in all tests consists of de-ionized water with 1 wt.% NaCl salt added. Before each test, 
the brine phase was continuously purged with CO2 until saturated and was adjusted to pH 5.0 with 
NaHCO3. The tested oil phase is a refined model oil. The density and viscosity of the model oil are 825 
kg/m3 and 2 cp, respectively. Two generic inhibitor packages, “quaternary ammonium chloride” and 
“fatty amino” were tested through the developed methodology. The formulations of two inhibitor 
packages are shown in Table 1 and Table 2 as received from the vendor. Details of their chemical 
structure, chemical name are not available as received. The concentration of inhibitor package used for 
tests was from 0 to 200 ppm. 
 
The test coupons used for corrosion inhibition tests conducted in a glass cell are carbon steel (C1018) 
cylindrical coupons. The test coupons used for wettability tests employed in a goniometer are carbon 
steel (X65) flat coupons. The composition of C1018 and X65 is shown in Table 3 and Table 4, 
respectively. The carbon steel test coupons were polished with 400 and 600 grit SiC paper, cleaned with 
isopropanol in an ultrasonic bath for 30 seconds, rinsed with isopropanol and quickly dried with a dryer 
before each corrosion inhibition and wettability test. 
 

Corrosion inhibition 
 
The corrosion inhibition performance of corrosion inhibitors was tested in a glass cell with rotating 
cylinder working electrode (carbon steel, C1018). The carbon steel coupon is 1.18 cm in diameter, 1.46 
cm in length and has 5.41 cm2 exposed area to the test solution. All corrosion inhibition experiments 
were conducted with constant coupon rotation speed 1000 rpm which gives 2.2 Pa shear stress (the shear 
stress was calculated with rotation speed and diameter of test coupon) on the test coupon. Three test 
series were conducted, using three different techniques, LPR, EIS and potentiodynamic sweeps:  

 
1. Only the brine phase was present in the glass cell. The performance of corrosion inhibition was 

observed with different concentrations (5, 20, 60, 100 and 200 ppm) of corrosion inhibitor. It is 
referred to as pure corrosion inhibition in this research. 

2. Test coupon was immerged in the brine phase. After the injection of corrosion inhibitor into the 
brine phase by syringe, model oil was immediately added on the top of the brine phase. The 
volume ratio of mode oil to brine is 1:9 in the 2 liters glass cell. The concentration of corrosion 
inhibitor was calculated based on the total liquid volume. During experiments, the test coupon 
was periodically lifted up and stayed in the oil phase for 5 minutes with keeping 1000 rpm 
rotation speed, then was returned to the brine phase. Corrosion measurements were carried out 
immediately after the test coupon was back to the brine phase. Since the test coupon was wetted 
by oil phase during lifting up process, it is referred as direct oil wet in this research. The 
periodical direct oil wet experiments were conducted at different concentrations (1, 5, 20 and 60 
ppm) of corrosion inhibitor. 

3



3. Model oil was added on top of the brine phase after the injection of corrosion inhibitor, similar as 
test series 2, but the test coupon was not lifted up during the experiments. i.e. the carbon steel 
coupon was not directly exposed to the oil phase. This test series is referred as partitioning in 
this research. 

 
For corrosion rate measurements, linear polarization resistance (LPR) technique was used. The scanned 
potential range for LPR measurements is from -5 mV to +5 mV vs. the open circuit potential with 
scanning rate 0.1 mV/s. Solution resistance was measured by electrochemical impedance spectroscopy 
(EIS) technique to compensate the measured polarization resistance by LPR. Potentiodynamic sweeps 
were conducted at the end of corrosion measurements to study the inhibition mechanism. The cathodic 
sweep was conducted first starting at the open circuit potential and ending 400 mV or 500 mV lower. 
The anodic sweep was conducted after the open circuit potential had stabilized. The anodic sweep was 
finished with 150 mV over the open circuit potential. The scanning rate for potentiodynamic sweeps was 
0.125 mV/s. 
 

Oil-water interfacial tension 
 
Corrosion inhibitor package was added to a test tube which contained model oil - brine mixture. The 
total volume of mixture was 30 mL and water cut is 50% (i.e. the volume of the brine was 15 mL). The 
concentration of corrosion inhibitor ranged from 0 to 200 ppm, based on the total volume of mixture. An 
illustration of the test tube with model oil - brine mixture and corrosion inhibitor is shown in Figure 2. 
To control the water chemistry of the brine phase, a glove bag with CO2 purging was used. The samples 
used for oil-water interfacial tension measurements were all prepared in the glove bag. After adding the 
corrosion inhibitor package to model oil - brine mixture in the test tube, the test tube was shaken by 
hand for a few minutes and then was placed in a container at constant temperature 25°C for a period of 1 
day to ensure adequate partitioning time. At the end of this period the sample was moved by syringe to a 
small glass cup which was used for model oil - brine interfacial tension measurements with a 
tensiometer. Figure 3 shows a real view picture of tensiometer employing a platinum ring to measure 
oil-water interfacial tension of the samples after 1 day inhibitor partitioning. Before each test, the 
platinum ring was cleaned with acetone, isopropanol and was heated to dry. The ring was immersed in 
the brine phase first and slowly pulled up to the oil-brine interface until the maximum interfacial force 
reached. The oil-water interfacial tension is in units of dyne per centimeter (dyne/cm) read from the 
tensiometer, which is equivalent to milliNewtons per meter (mN/m). The measurements were repeated 
five times. Between each individual measurement, the glass cup for holding the oil-water mixture and 
the platinum ring were cleaned with acetone, isopropanol and dried with heat.  
 

Wettability (contact angle) 
 
The wettability of steel surface was characterized by contact angles of oil/brine droplets on steel surface 
immersed in a continuous brine/oil phase. In this research, a contact angle of 90° or greater for an oil 
droplet in a continuous brine phase indicates the steel surface is hydrophilic. A contact angle of 90° or 
less indicates that steel surface is hydrophobic.  

 
The contact angle measurements were carried out at room temperature in a goniometer, which was 
designed and built at the Institute for Corrosion and Multiphase Technology of Ohio University. Figure 
4 shows a real view picture of the goniometer. Two types of contact angle can be measured in the 
goniometer, contact angles of oil droplets in a continuous brine phase and water droplets in a continuous 
oil phase. The continuous phase was first added in the goniometer. CO2 gas purging was then applied to 
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avoid oxygen contamination during testing after which the pH was adjusted to 5.0 with NaHCO3, If the 
continuous phase was brine. A flat X65 carbon steel coupon was polished with 400 and 600 grade SiC 
paper and placed on a Teflon sample holder in the continuous phase contained in the goniometer. A 
baseline test without corrosion inhibitors was carried out first after which the corrosion inhibitor 
package was injected into the continuous phase and the concentration was increased in steps. Droplets 
were placed on the steel surface by 10 microliter syringe. Both videos and images were taken for angle 
measurements. For each concentration of corrosion inhibitor the contact angle measurements were 
repeated 4 times. The goniometer was cleaned with acetone and isopropanol after testing was complete.. 
 

RESULTS 
 

Corrosion inhibition 
 

Pure corrosion inhibition: In pure corrosion inhibition tests, corrosion rate and open circuit 
potential were monitored for different concentrations of corrosion inhibitor. Figure 5 and Figure 6 show 
the pure corrosion inhibition test results for “quaternary ammonium chloride” and “fatty amino”, 
respectively. Results show that “quaternary ammonium chloride” can not efficiently inhibit CO2 
corrosion for up to 20 ppm of inhibitor concentration. A higher concentration such as 60 to 100 ppm is 
required to reduce CO2 corrosion to 90% inhibition efficiency in brine phase. Open circuit potential 
shifted to the positive potential direction with increasing corrosion inhibitor concentration.  
 
It was found that “fatty amino” inhibitor package gave 85% inhibition efficiency when only 2 ppm 
inhibitor was injected in the brine phase (Figure 6). Inhibition efficiency over 90% can be obtained for 
inhibitor concentration of 5 ppm and higher. It took shorter time to reach steady corrosion inhibition 
than for the “quaternary ammonium chloride” inhibitor. Addition of “fatty amino” inhibitor also 
increased the open circuit potential as found for “quaternary ammonium chloride”.  
 
Potentiodynamic sweeps were done at the end of pure corrosion inhibition tests. Figure 7 and Figure 8 
show the potentiodynamic sweeps for “quaternary ammonium chloride” and “fatty amino”, respectively. 
It can be seen that both anodic and cathodic reactions are inhibited with the addition of corrosion 
inhibitor. At low concentration of “quaternary ammonium chloride”, such as 20 to 30 ppm, the 
inhibition effect was not obvious. This is also confirmed with LPR measurements. Only the anodic 
reaction was further inhibited with “fatty amino” concentration above 5 ppm. 
 

Direct oil wet: Figure 9 shows direct oil wet test results for “quaternary ammonium chloride” at 
20 and 60 ppm injection concentration. The dotted black line shows the inhibitor injection point (1.5 
hours after beginning of each test). After corrosion inhibitor injection into the brine phase, the model 
phase was quickly introduced on the top of the brine phase by syringe. The test coupons were lifted up 
to the oil phase four times during each test. The straight lines show the direct oil wet points in time 
domain. Only a slight effect was observed on the corrosion rate for “quaternary ammonium chloride” 
inhibitor for both 20 and 60 ppm concentration compared to the pure inhibition test. The corrosion rate 
of the test containing 20 ppm inhibitor stabilized at the rate of 0.85 mm/yr for 25 hours after the first 
direct oil wet was done. Compared to the test results from pure corrosion inhibition at the same 
concentration, the corrosion rate only drops about 0.2 mm/yr. For 60 ppm inhibitor concentration, the 
first direct oil wet decreasing the corrosion rate temporarily, but after the second direct oil wet the 
corrosion rate returned to the pure inhibition value. No obvious improvement of inhibition performance 
was found for “quaternary ammonium chloride” inhibitor with the test coupon directly exposed to model 
oil phase and back to the brine phase.  
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Figure 10 shows results for direct oil wet test for “fatty amino” inhibitor at 1 and 5 ppm. The test coupon 
was lifted up into the model oil phase for three times in each test, at 6.4 hours, 18.4 hours and 24.9 hours 
for the 1 ppm test and 5.2 hours, 11.4 hours and 23.3 hours for the  5 ppm inhibitor concentration. When 
the coupon was put back into the brine phase the open circuit potential was immediately monitored. The 
open circuit potential was unstable during the first 30 minutes after the direct oil wet and during that 
time, LPR measurements could not be conducted. An obvious drop in the corrosion rate was found when 
the open circuit became stable and LPR measurement was conducted after the first direct oil wet. The 
second and third direct oil wet were done in both experiments. Only a slight drop in the corrosion rate 
was seen following the second direct oil wet and no further decrease of corrosion rate was observed for 
the third direct oil wet. Two possible explanations can be deduced from these results. The “fatty amino” 
inhibitor package is oil soluble and water dispersible and the additional source of inhibitor molecules in 
the model oil phase can give better surface coverage during the exposure to oil phase and thus improve 
the inhibition performance in the brine phase. Another explanation is that the wettability of steel surface 
changed from hydrophilic to hydrophobic after inhibitor molecules adsorbed at the steel surface, 
forming a thin oil film. The obvious enhanced corrosion inhibition was found with “fatty amino” 
inhibitor after the first direct oil wetting. However, the improvement could not be enhanced with further 
periodic direct oil wetting. 
 

Partitioning: Figure 11 shows the result from the partitioning test for 5 ppm “fatty amino” 
inhibitor concentration. For this test, the oil phase was absent. The dotted straight line in Figure 11 
indicates the inhibitor injection point at 6 hours. After the corrosion inhibitor was injected, the corrosion 
rate measurements were conducted in the same way as pure corrosion inhibition tests. The model oil was 
added into the glass cell with a 5 mL syringe (indicated by a solid line in Figure 11). After the addition 
of model oil, the test coupon was kept in the brine phase. It showed that the addition of the 5 mL model 
oil on the top of the brine phase did not affect the corrosion rate. The corrosion rate remained steady 
until the end of the experiment, with a second model oil addition by 20 mL applied at 23 hours. The 
corrosion rate from the partitioning test with 5 ppm “fatty amino” is identical to the results from the pure 
corrosion inhibition test. Partitioning tests were conducted and repeated with injection of 5, 20 and 60 
ppm “fatty amino” and 20, 60 ppm “quaternary ammonium chloride”, respectively. In all partitioning 
tests, there was no improvement of corrosion inhibition found for two different inhibitor packages with 
model oil addition. 
 

Oil-water interfacial tension 
 
The interfacial tension of model oil - brine with no inhibitor added was measured as 40 dyne/cm. Figure 
12 shows that the addition of an inhibitor resulted in a reduction in the oil-water interfacial tension. 
 
The inhibitor concentration at the breakpoint of oil - water interfacial tension is called critical micelle 
concentration (CMC). When CMC is achieved the oil - water interface has become saturated with 
inhibitor molecules. With increasing the inhibitor concentration above the CMC, micelles form in 
oil/water phase and oil – water interfacial tension becomes stable. The critical micelle concentrations 
were found for two inhibitor packages shown in Figure 12. It can be seen that very low concentrations of 
“fatty amino” and “quaternary ammonium chloride” caused a great initial drop in oil – water interfacial 
tension. The breakpoints occurred for 3 ppm “fatty amino” and 5 ppm “quaternary ammonium chloride”.  
 
Oil - water interfacial tension is a key factor to determine the flow regime and phase wetting regime for 
oil - water pipe flow. With the addition of corrosion inhibitor, a reduction of oil - water interfacial 
tension occurs which makes the water entrainment easier at lower oil flow rate. Once the water is 
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entrained in the flowing oil phase, internal corrosion can be avoided. Figure 13 shows the model oil – 
brine flow regime prediction by the water wetting model for the transition line between fully dispersed 
flow and stratified flow in a 4’’ pipe flow. In the graph, the area on the left side of the transition lines 
represents the stratified flow region and the right side area represents the dispersed flow region. The 
black line is the predicted transition line between two flow regimes for oil – water pipe flow without the 
addition of corrosion inhibitor. By lowering the oil - water interfacial tension causes the transition line to 
shift to lower values of oil – water mixture velocity at given water cut. In other words at given mixture 
velocity more water can be entrained and thereby greatly inducing the risk of corrosion. By adding 3 
ppm of “fatty amino”, water cut up to 15% can be entrained compared with only 6% without inhibitor.  
 
For a given inhibitor package, it is important to measure oil – water interfacial tension at desired 
inhibitor concentration with proper sample preparation as described above. The water wetting model 
developed at Institute for Corrosion and Multiphase Technology of Ohio University can be used to 
predict the flow regimes of oil – water pipe flow with the known value of oil – water interfacial tension 
as well as other fluid properties and flow conditions.  
 

Wettability of steel surface (contact angle) 
 

Model oil droplets-in-continuous brine phase (oil-in-water): Oil-in-water tests were conducted by 
placing oil droplets on the test coupon surface which was immersed in the continuous brine phase 
contained in the goinometer. Baseline test was employed first without inhibitor and then increasing 
concentration of inhibitor was added. The images of oil-in-water tests are shown in Figure 14 for “fatty 
amino” inhibitor. In all images, the top black area is a part of the carbon steel coupon. Model oil droplets 
were placed on the surface of the test coupon by a syringe. The lines on each image indicate the contact 
angle of oil-in-water. The contact angle of oil-in-water was measured as 158° with no inhibitor added in 
the brine phase, meaning that the wettability of carbon steel surface is hydrophilic (favors water). With 
the addition of inhibitor the contact angle decreased below 90° and the steel surface became 
hydrophobic (favors oil) At high concentrations of inhibitor, the model oil droplet immediately adsorbed 
on the surface and formed a very small contact angle. 
 
A series of oil-in-water contact angle tests were also conducted with “quaternary ammonium chloride”. 
Figure 15 is a plot of the measured values of oil-in-water contact angle with increasing “quaternary 
ammonium chloride” inhibitor concentration in the brine phase. It is clear that addition of “quaternary 
ammonium chloride” had the similar effect as “fatty amino” which made the steel surface change 
wettability to hydrophobic.  
 
Brine droplets-in-continuous model oil phase (water-in-oil): A series of water-in-oil tests with “fatty 
amino” were employed. The brine droplets were placed on top of a carbon steel coupon, which was 
immersed in the model oil phase. Figure 16 shows images of water-in-oil contact angle measurement 
results. The angle was measured as 70° without inhibitor addition indicating that the steel surface is 
hydrophilic. By adding “fatty amino” inhibitor into the model oil phase, the angles increased. Up to 200 
ppm inhibitor addition, the contact angle of water-in-oil became 150° which showed the model oil phase 
has a higher affinity to the steel surface. Since “quaternary ammonium chloride” inhibitor used in this 
research is ionic type inhibitor (i.e. water soluble only), experiment for water-in-oil with “quaternary 
ammonium chloride” was not performed. 
 
A summary plot Figure 17 shows contact angles from both oil-in-water and water-in-oil tests with 
different concentrations of “fatty amino” inhibitor. The dots on the figure represent the data from water-
in-oil tests and the yellow dots represent the data from oil-in-water tests. It is clear to see that the contact 
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angles of oil-in-water decreased and the contact angles of water-in-oil increased with increasing the 
“fatty amino” inhibitor concentration. The wettability of steel surface was greatly affected by the two 
corrosion inhibitors tested in this research.  
 

CONCLUSIONS 
 
The effect of corrosion inhibitor on water wetting and CO2 corrosion in an oil – water two phase system 
was studied. Some main points from this research were summarized as: 
 

 the performance of corrosion inhibition with selected inhibitor in oil – water system can be 
enhanced when the steel surface is periodically wetted with oil phase 

 oil – water interfacial tension is greatly reduced with addition of corrosion inhibitor. It affects 
the transition from stratified flow to fully dispersed flow under certain flow conditions 

 the wettability of carbon steel surface may change from hydrophilic to hydrophobic when 
inhibitor is added.. 

 
In this project, it was also found that different formulations of the inhibitor package can have different 
inhibitive effects under an oil – water two phase flow, e.g. direct oil wetting did not enhance the 
performance of “quaternary ammonium chloride” inhibitor. To estimate the inhibitive effects in an oil-
water two phase system for a given corrosion inhibitor package, a methodology was proposed in this 
research. Two inhibitor packages were tested according to the developed methodology: 

• testing corrosion inhibition in a glass cell 
• testing oil – water interfacial tension with a tensiometer 
• testing oil-in-water and water-in-oil contact angles with a goinometer 
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Table 1 Compositions of fatty amino inhibitor package (as received from the vendor) 
 

Substance Weight (%) Solubility 

fatty amino compound 60 – 80   

acetic acid  10 – 30 

methanol 5 - 10 

 

Oil soluble / water dispersible 

 

Table 2 Compositions of “quaternary ammonium chloride” inhibitor package (as received from the 
vendor) 

 

Substance Weight (%) Solubility 

quaternary ammonium chloride 60 – 80   

methanol 10 – 30 

Water soluble 

 
 
Table 3 Chemical composition of X65 carbon steel coupon (wt.%) 
 

C Si P S Mn Al Fe 

0.21 0.38 0.09 0.05 0.05 0.01 balance 

 
 
Table 4 Chemical composition of C1018 carbon steel coupon (wt.%) 
 

C Si P S Mn Cr Cu Ni Mo Al Fe 

0.05 0.31 0.013 0.002 1.32 0.042 0.019 0.039 0.031 0.032 balance
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Figure 1 Phase wetting map based on superficial oil and water velocities in horizontal model oil - water  
4” pipe. 
 
 
 
 
  

15 ml model oil

15 ml brine (1wt% NaCl, CO2 saturated, adjusted to pH 5.0) 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 Illustration of sample preparation for model oil - brine with different concentrations of 
corrosion inhibitor in interfacial tension measurements  
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Figure 3 Tensiometer used for model oil - brine interfacial tension measurements 
 
 

 
 
Figure 4 Goniometer used for contact angle measurements 
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Figure 6 Corrosion rate (a) and open circuit potential (b) vs. test time in pure corrosion inhibition tests 
for “fatty amino” at different inhibitor concentrations 
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Figure 7 Potentiodynamic sweeps for “quaternary ammonium chloride” inhibitor. 
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Figure 8 Potentiodynamic sweeps for “fatty amino” inhibitor. 
 

 
 
 
 
 
 
 

14



 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.01

0.1

1

10

0 5 10 15 20 25 30

Test time / (hrs)

C
or

ro
si

on
 ra

te
 / 

(m
m

/y
r)

Inhibitor addition

Direct oil wet 
(#1, 2, 3, 4)

#1 #2 #3 #4

Direct oil wet

without oil wet

0.01

0.1

1

10

0 5 10 15 20 25 30

Test time / (hrs)

C
or

ro
si

on
 ra

te
 / 

(m
m

/y
r)

Inhibitor addition

Direct oil wet 
(#1, 2, 3, 4)

#1 #2 #3 #4

Direct oil wet

without oil wet

(b) 
 
 
 
 
 
 

0.01

0.1

1

10

0 5 10 15 20 25 30

Test time / (hrs)

C
or

ro
si

on
 ra

te
 / 

(m
m

/y
r)

Inhibitor addition

Direct oil wet 
(#1, 2, 3, 4)

#1 #2 #3 #4

Direct oil wet

without oil wet

0.01

0.1

1

10

0 5 10 15 20 25 30

Test time / (hrs)

C
or

ro
si

on
 ra

te
 / 

(m
m

/y
r)

Inhibitor addition

Direct oil wet 
(#1, 2, 3, 4)

#1 #2 #3 #4

Direct oil wet

without oil wet

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9 Direct oil wetting test results for “quaternary ammonium chloride” (a) 20 ppm and (b) 60 ppm. 
The inhibitor was added at 1.5 hours and the coupon was oil wet at 4.5, 13, 20 and 25 hours. 
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Figure 10 Direct oil wetting test results for “fatty amino” (a) 1 ppm and (b) 5 ppm. The inhibitor was 
added at 1.5 hours and the coupon was oil wet at 5.3, 11.2 and 23.2 hours.  
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Figure 11 Partitioning test with 5 ppm “fatty amino” inhibitor. 
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Figure 12 Model oil – brine interfacial tension vs. inhibitor concentration; Critical Micelle 
Concentration (CMC) points were determined for two inhibitor packages based on the test results. 
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Figure 13  Flow regime prediction by current water wetting model for transition line between fully 
dispersed flow and stratified flow to clarify the effect of corrosion inhibitor on model oil – brine flow 
regimes; black line: no inhibitor; pink line: 1 ppm “fatty amino” inhibitor addition; green line: 3 ppm 
“fatty amino” inhibitor addition based on the total volume of fluid. At the given 1.5 m/s mixture velocity, 
6% water cut is the transition point without inhibitor addition; 9% and 15% water cuts are the transition 
points for 1 and 3 ppm “fatty amino” inhibitor addition. 
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Figure 14 Images of oil-in-water contact angle measurements with 0, 1, 5, 20 and 200 ppm “fatty 
amino” inhibitor addition in the continuous brine phase. 
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Figure 15 Contact angles of oil-in-water tests with “quaternary ammonium chloride” inhibitor. 
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Figure 16 Images of water-in-oil contact angle measurements with 0, 1, 5 and 200 ppm “fatty amino” 
inhibitor addition in the continuous model oil phase. 
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Figure 17 Contact angles of oil-in-water and water-in-oil tests with different concentrations of “fatty 
amino” inhibitor.  
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