Sumit Sharma
Associate Professor
Stocker 181
Biomedical Engineering
Institute for Corrosion and Multiphase Technology
Nanoscale Quantum Phenomena Institute (NQPI)
Research Interests: molecular modeling and simulations, thermodynamics and statistical mechanics, biomolecular systems, polymers, machine learning
Journal Article, Academic Journal (44)
- Mehrani, R., Mondal, J., Ghazanfari, D., Goetz, D., McCall, K., Bergmeier, S., Sharma, S. (2024). Capturing the Effects of Single Atom Substitutions on the Inhibition Efficiency of Glycogen Synthase Kinase-3β Inhibitors via Markov State Modeling and Experiments. Journal of Chemical Theory and Computations; https://pubs.acs.org/doi/abs/10.1021/acs.jctc.4c00311.
- Hammond, C., Qadikolae, A., Aghaaminiha, M., Sharma, S., Wu, L. (2024). New Insights into the Formation of Aggregates of Bidisperse Nano- and Microplastics in Water Based on the Analysis of In Situ Microscopy and Molecular Simulation. 28. Langmuir; 40: 14455–14466. https://pubs.acs.org/doi/abs/10.1021/acs.langmuir.4c01216.
- Norooziasl, N., Qadikolae, A., Young, D., Brown, B., Sharma, S., Singer, M. (2024). Experiments and Molecular Simulations to Study the Effect of Surface-Active Compounds in Mixtures of Model Oils on CO2 Corrosion during Intermittent Oil–Water Wetting. Langmuir; https://pubs.acs.org/doi/10.1021/acs.langmuir.4c00052#.
- Eslami, M., Sharma, S., Young, D., Singer, M. (2024). Efficiency of Volatile Corrosion Inhibitors in the Presence of n-Heptane: An Experimental and Molecular Simulation Study. Corrosion Journal; https://meridian.allenpress.com/corrosion/article-abstract/doi/10.5006/4531/499900/Efficiency-of-Volatile-Corrosion-Inhibitors-in-the?redirectedFrom=fulltext.
- Escobedo, F., Haji-Akbari, A., Sharma, S. (2024). Introduction to Computational and Theoretical Studies Focused on Self-Assembly and Molecular Organization. 4. Journal of Chemical Theory and Computations; 20: 1503-1504. https://pubs.acs.org/doi/full/10.1021/acs.jctc.4c00147.
- Chambers, C., Nagar, H., Sharma, S., Reza, M. (2023). Elucidating microcystin-LR adsorption on pyrolyzed hydrochars via experiments and molecular simulations. Journal of Analytical and Applied Pyrolysis; 176: 106243. https://www.sciencedirect.com/science/article/pii/S016523702300387X.
- Dasgupta, D., Mehrani, R., Carlson, H., Sharma, S. (2023). Identifying Potential Ligand Binding Sites on Glycogen Synthase Kinase 3 Using Atomistic Cosolvent Simulations. ACS Applied Bio Materials; https://pubs.acs.org/doi/full/10.1021/acsabm.2c01079.
- Aghaaminiha, M., Farnoud, A., Sharma, S. (2023). Interdependence of Cholesterol Distribution and Conformational Order in Lipid Bilayers. 3. Biointerphases; 18: 031001. https://pubs.aip.org/avs/bip/article/18/3/031001/2887740/Interdependence-of-cholesterol-distribution-and?searchresult=1.
- Faeli Qadikolae, A., Sharma, S. (2023). Molecular Simulations of Adsorption of Surfactant Micelles on Partially and Fully Covered Iron Surfaces. Journal of Molecular Liquids; 379: 121685. https://www.sciencedirect.com/science/article/pii/S0167732223004889.
- Qadikolae, A., Sharma, S. (2022). Facet Selectivity of Cetyltrimethyl Ammonium Bromide Surfactants on Gold Nanoparticles Studied Using Molecular Simulations. 48. The Journal of Physical Chemistry B; 126: 10249-10255. https://pubs.acs.org/doi/abs/10.1021/acs.jpcb.2c06236.
- Singh, H., Sharma, S. (2022). Understanding the Hydration Thermodynamics of Cationic Quaternary Ammonium and Charge-Neutral Amine Surfactants. 47. The Journal of Physical Chemistry B; 126: 9810-9820. https://pubs.acs.org/doi/abs/10.1021/acs.jpcb.2c03562.
- Baheri, B., Lindenberger, A., Sharma, S., Lee, S. (2022). Characterization of linear low-density polyethylene and halloysite nanotube (LLDPE/HNT) composites based on two-roll calendering melt fabrication. 5. Journal of Applied Polymer Science; 140: e53259. https://onlinelibrary.wiley.com/doi/abs/10.1002/app.53259.
- Wang, H., Sharma, S., Pailleret, A., Brown, B., Nesic, S. (2022). Investigation of corrosion inhibitor adsorption on mica and mild steel using electrochemical atomic force microscopy and molecular simulations. 10. Corrosion; 78: 978-990. https://meridian.allenpress.com/corrosion/article-abstract/78/10/978/484971/Investigation-of-Corrosion-Inhibitor-Adsorption-on.
- Mehrani, R., Sharma, S. (2022). Stability of water confined between supported self-assembled monolayers. 27. The Journal of Physical Chemistry B; 126: 5110-5116. https://pubs.acs.org/doi/full/10.1021/acs.jpcb.2c00588.
- Singh, H., Sharma, S. (2022). Hydration of linear alkanes is governed by the small length-scale hydrophobic effect. 6. Journal of Chemical Theory and Computation; 18: 3805-3813. https://pubs.acs.org/doi/abs/10.1021/acs.jctc.2c00219.
- Hammond, C., Aghaaminiha, M., Sharma, S., Shen, C., Chen, H., Wu, L. (2022). Mesoscale aggregation of sulfur-rich asphaltenes: In-situ microscopy and coarse-grained molecular simulation. 22. Langmuir; 38: 6896-6910. https://pubs.acs.org/doi/abs/10.1021/acs.langmuir.2c00323.
- Singh, H., Sharma, S. (2022). Determination of Equilibrium Adsorbed Morphologies of Surfactants at Metal-Water Interfaces Using a Modified Umbrella Sampling-Based Methodology. Journal of Chemical Theory and Computation; https://pubs.acs.org/doi/abs/10.1021/acs.jctc.2c00078.
- Aghaaminiha, M., Mehrani, R., Colahan, M., Brown, B., Singer, M., Nesic, S., Vargas, S., Sharma, S. (2021). Machine learning modeling of time-dependent corrosion rates of carbon steel in presence of corrosion inhibitors. Corrosion Science; 193: 109904.
- Aghaaminiha, M., Mehrani, R., Colahan, M., Brown, B., Singer, M., Nesic, S., Vargas, S., Sharma, S. (2021). Machine learning modeling of time-dependent corrosion rates of carbon steel in presence of corrosion inhibitors. Corrosion Science; 193: 109904. https://www.sciencedirect.com/science/article/pii/S0010938X21006703#!.
- Mohammadreza, A., Mehrani, R., Reza, T., Sharma, S. (2021). Comparison of machine learning methodologies for predicting kinetics of hydrothermal carbonization of selective biomass. Biomass Conversion and Biorefinery.
- Sharma, D., Kare, A., Valsaraj, K., Sharma, S. (2021). Intensification of a Neutralization Process for Waste Generated from Ion Exchange Regeneration for Expansion of a Chemical Manufacturing Facility. Processes; 9: 1285. https://www.mdpi.com/2227-9717/9/8/1285.
- Aghaaminiha, M., Farnoud, A., Sharma, S. (2021). Quantitative relationship between cholesterol distribution and ordering of lipids in asymmetric lipid bilayers. Soft Matter; 17: 2742. https://pubs.rsc.org/en/content/articlelanding/2021/sm/d0sm01709d/unauth#!divAbstract.
- Mehrani, R., Sharma, S. (2021). Behavior of water confined between hydrophobic surfaces with grafted segments. Colloid and Interface Science Communications; 40: 100355. https://www.sciencedirect.com/science/article/pii/S2215038220301357?dgcid=author.
- Khan, M., Singh, H., Sharma, S., Cimatu, K. (2020). Direct Observation of Adsorption Morphologies of Cationic Surfactants at the Gold Metal–Liquid Interface. 22. The Journal of Physical Chemistry Letters; 11: 9901-9906. https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.0c02517.
- Ko, X., Olivo, J., Brown, B., Nesic, S., Sharma, S. (2020). Experiments and Molecular Simulations to Study the Role of Co-adsorption of Oil in Corrosion Inhibitor Films in Improving Corrosion Mitigation. CORROSION; 76: https://www.corrosionjournal.org/doi/abs/10.5006/3606.
- Ko, X., Sharma, S. (2020). A Quantitatively Accurate Theory to Predict Adsorbed Configurations of Asymmetric Surfactant Molecules on Polar Surfaces. 26. The Journal of Physical Chemistry B; 124: 5517 - 5524. https://pubs.acs.org/doi/10.1021/acs.jpcb.0c02681.
- Singh, H., Sharma, S. (2020). Free Energy Profiles of Adsorption of Surfactant Micelles at Metal-Water Interfaces. Molecular Simulation.
- Singh, H., Sharma, S. (2020). Disintegration of Surfactant Micelles at Metal-Water Interfaces Promotes their Strong Adsorption. https://pubs.acs.org/doi/abs/10.1021/acs.jpcb.9b10780.
- Sharma, S., Singh, H., Ko, X. (2019). A Quantitatively Accurate Theory to Predict Adsorbed Configurations of Linear Surfactants on Polar Surfaces. 34. The Journal of Physical Chemistry B; 123: 7464-7470. https://pubs.acs.org/doi/abs/10.1021/acs.jpcb.9b05861.
- Khosravi, Z., Sharma, S., Farnoud, A. (2019). Sub-micron polymeric particles accelerate insulin fibrillation by surface adsorption. 2. Biointerphases; 14: 021001.
- Carey, H., Hildreth, 3rd, B., Samuvel, D., Thies, K., Rosol, T., Toribio, R., Charles, J., Ostrowski, M., Sharma, S. (2019). Eomes partners with PU.1 and MITF to Regulate Transcription Factors Critical for osteoclast differentiation.. iScience; 11: 238-245.
- Ghasemi, M., Ramsheh, S., Sharma, S. (2018). Quantitative assessment of thermodynamic theory in elucidating behavior of water under hydrophobic confinement. Journal of Physical Chemistry B; https://pubs.acs.org/doi/abs/10.1021/acs.jpcb.8b09026.
- Sharma, S., Ko, X., Kurapati, Y., Himanshu, S., Nesic, S. (2018). Adsorption behavior of organic corrosion inhibitors on metal surfaces – some new insights from molecular simulations. Corrosion; http://www.corrosionjournal.org/doi/abs/10.5006/2976.
- Kurapati, Y., Sharma, S. (2018). Adsorption free energies of imidazolinium-type surfactants in infinite dilution and in micellar state on gold surface. Journal of Physical Chemistry B; 122: 5933-5939. https://pubs.acs.org/doi/abs/10.1021/acs.jpcb.8b02358.
- Ko, X., Sharma, S. (2017). Adsorption and self-assembly of surfactants on metal-water interfaces. 45. Journal of Physical Chemistry B; 121: 10364 - 10370. http://pubs.acs.org/doi/abs/10.1021/acs.jpcb.7b09297.
- Remsing, R., Xi, E., Vembanur, S., Sharma, S., Debenedetti, P., Garde, S., Patel, A. (2015). Pathways to dewetting in hydrophobic confinement. Proceedings of the National Academy of Sciences U.S.A.; 112: 8181-8186. http://www.pnas.org/content/112/27/8181.short.
- Sharma, S., Buldyrev, S., Debenedetti, P., Rossky, P., Stanley, E., Kumar, S. (2013). A coarse grained protein model in water – like solvent. Nature Scientific Reports; 3: 1841. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3653448/.
- Sharma, S., Debenedetti, P. (2012). Free energy barriers to evaporation of water in hydrophobic confinement. 44. The Journal of Physical Chemistry B; 116: 13282 - 13289. http://pubs.acs.org/doi/abs/10.1021/jp308362h.
- Radhakrishna, M., Sharma, S., Kumar, S. (2012). Enhanced Wang Landau sampling of adsorbed protein conformations. 11. The Journal of Chemical Physics; 136: 114114. http://aip.scitation.org/doi/abs/10.1063/1.3691669.
- Sharma, S., Debenedetti, P. (2012). Evaporation rate of water in hydrophobic confinement. 12. Proceedings of the National Academy of Sciences U.S.A.; 109: 4365 - 4370. http://www.pnas.org/content/109/12/4365.short.
- Anand, G., Sharma, S., Dutta, A., Kumar, S., Belfort, G. (2010). Conformational transitions of adsorbed proteins on surfaces of varying polarity. 13. Langmuir; 26: 10803-10811. http://pubs.acs.org/doi/abs/10.1021/la1006132.
- Sharma, S., Berne, B., Kumar, S. (2010). Thermal and structural stability of adsorbed proteins. 4. Biophysical Journal; 99: 1157-1165. http://www.sciencedirect.com/science/article/pii/S0006349510006685.
- Anand, G., Sharma, S., Kumar, S., Belfort, G. (2009). Stability of Tethered Proteins. 9. Langmuir; 25: 4998-5005. http://pubs.acs.org/doi/abs/10.1021/la803771d.
- Sharma, S., Kumar, S. (2008). Finite size effects on locating conformational transitions for macromolecules. The Journal of Chemical Physics; 129: 134901. http://aip.scitation.org/doi/abs/10.1063/1.2979142.
Journal Article, Professional Journal (1)
- Wang, H., Sharma, S., Pailleret, A., Brown, B., Nesic, S. (2022). Investigation of corrosion inhibitor adsorption on mica and mild steel using electrochemical atomic force microscopy and molecular simulations. Corrosion Journal.
Book, Chapter in Textbook (1)
- Singh, H., Sharma, S. (2023). Understanding the Adsorption Behaviour of Corrosion Inhibitors on Metal–Water and Air–Water Interfaces from Molecular Simulations. 1. Taylor & Francis Group; 51-73. https://www.taylorfrancis.com/chapters/edit/10.1201/9781003242550-4/understanding-adsorption-behaviour-corrosion-inhibitors-metal%E2%80%93water-air%E2%80%93water-interfaces-molecular-simulations-himanshu-singh-sumit-sharma.
Conference Proceeding (3)
- Ko, X., Sharma, S. (2020). Adsorption and Self-Assembly of Corrosion Inhibitors on Metallic Surfaces Studied Using Molecular Simulations. NACE Corrosion 2020.
- Singh, H., Sharma, S. (2020). Designing Corrosion Inhibitors with High Aqueous Solubility and Low Tendency towards Micellization: A Molecular Dynamics Study. NACE Corrosion 2020.
- Singh, H., Kurapati, Y., Sharma, S. (2019). Aggregation and Adsorption Behavior of Organic Corrosion Inhibitors studied using Molecular Simulations. NACE Corrosion; 12953.